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Abstract

This paper studies asymptotic efficiency of autocovariance estimation in panel data set-

tings with individual effects when both the cross-sectional sample size and the length of time

series tend to infinity. The efficiency bound for regular estimators of autocovariances is de-

rived by using a Hajék (1970)-type convolution theorem. In view of the efficiency bound, we

provide a necessary and sufficient condition under which bias-corrected autocovariance esti-

mators developed by Okui (2010) are asymptotically efficient. In particular, we show that,

when the individual dynamics follow an ARMA(p, q) process, the bias-corrected autocovari-

ance estimator at lag k is asymptotically efficient if and only if p ≥ q and 0 ≤ k ≤ p − q.

These efficiency results are analogous to those for time series analysis obtained by Porat

(1987) and Kakizawa and Taniguchi (1994).
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across individuals. For example, income is typically serially correlated since an individual who

received a high income in a previous year tends to receive a high income this year too. It

is interesting and important to understand the temporal dependence of the income process

separately from heterogeneity in productivity. In time series analysis, a typical first step for

analyzing the dynamics is to examine the autocovariances and autocorrelations. However, it

is not trivial to do so in panel data settings because we need to take care of heterogeneity

across individuals although some textbooks recommend such an analysis (see, e.g., Cameron and

Trivedi (2005, chapter 21.3)). Okui (2010) studies the bias in the conventional autocovariance

estimators and proposes asymptotically unbiased estimators of autocovariances for panel data

with individual effects. This paper is concerned with asymptotic efficiency of autocovariance

estimation using panel data in the presence of individual effects.

We consider the setting in which we observe an economic variable for many individuals and

long time periods and the observed variable can be written as a sum of an individual effect

and an idiosyncratic component. The idiosyncratic component is Gaussian stationary and its

spectral density can be characterized by a finite number of parameters. We derive the lower

bound of the asymptotic variances of any regular estimators of an autocovariance using double

asymptotics under which both the cross-sectional sample size and the length of time series tend

to infinity.

Another contribution is to provide conditions under which Okui’s (2010) autocovariance

estimator achieves the efficiency bound. In particular, we show that if the true data generating

process follows a Gaussian stationary ARMA(p, q) model, Okui’s estimator for the k-th-order

autocovariance is asymptotically efficient if and only if p ≥ q and 0 ≤ k ≤ p − q. In general,

to obtain an asymptotically efficient estimator, we need to identify the correct data generating

process and estimate the model parameters efficiently. The efficient autocovariance estimator

can be constructed based on the efficiently estimated model parameters. However, the true

data generating process is typically unknown a priori. It is not a trivial task to develop a model

selection procedure to find the correct specification1 and it is also difficult to examine the

effect of model selection on the estimation. Furthermore, for panel data with individual effects,

estimation procedure may become model specific.2 Thus, if we know that Okui’s autocovariance

1Lee (2010a) develops an information criterion to choose the lag of panel AR models and Lee (2010b) proposes

asymptotically unbiased estimators for AR coefficients.
2There have been many different estimators proposed for panel ARMA models. For panel AR models, see

Anderson and Hsiao (1981), Anderson and Hsiao (1981), Arellano and Bond (1991), Holtz-Eakin, Newey and

Rosen (1988), Hahn and Kuersteiner (2002), Hahn and Moon (2006) and Lee (2008). For MA models, see Baltagi

and Li (1994).
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estimator is asymptotically efficient in some data generating process and if we think that the

true data generating process can be described by this class of data generating process, then

we can efficiently estimate autocovariances without going through a complicated and difficult

process of model specification and model specific estimation.

The notion of efficiency used in this paper is that of the convolution theorem by Hajek

(1970), which is extended to cases with infinite dimensional parameters by van der Vaart and

Wellner (1996). We note that the number of parameters tends to infinity in our case because

there are as many individual effects as the cross-sectional sample size. This paper contributes

to the literature of efficient estimation in the sense that we investigate the efficiency for general

dynamic panel data models with individual effects under double asymptotics.

There are three papers that are closely related to the current discussion and on which the

efficiency result presented in this paper is based. Davies (1973) derives the local asymptotic

normality of Gaussian stationary time series models where the spectral density is determined

by a finite number of parameters.3 Showing the local asymptotic normality is an important

step in obtaining the efficiency bound and we also prove the local asymptotic normality based

on Davies’ (1973). The difference from Davies’ (1973) is that we consider panel data settings

and use double asymptotics. Another difference is that we consider individual effects whose

cardinality tends to infinity while Davies (1973) only considers a finite number of parameters.

Hahn and Kuersteiner (2002) derives the efficiency bound for panel AR(1) models with

Gaussian errors and individual effects. Our mathematical derivation of the efficiency bound

closely follows that of Hahn and Kuersteiner (2002). On the other hand, we obtain a more

general result and the efficiency bound proved by Hahn and Kuersteiner (2002) can be obtained

as a special case of our result.

Kakizawa and Taniguchi (1994) derives the lower bound of the variances of autocovariance

estimator in time series setting.4 They give a necessary and sufficient condition under which

the sample autocovariance estimator is asymptotically efficient in Gaussian time series models

without intercept. In particular, they show that the k-th order sample autocovariance is asymp-

totically efficient if the process follows an ARMA(p, q) model and p ≥ q and 0 ≤ k ≤ p− q. We

basically obtain the same result in panel data settings. Again the difference is that we consider

panel data in the presence of individual effects and use double asymptotics while Kakizawa and

Taniguchi (1994) consider only time series models.5

3See Section A.2 for the precise definition of the local asymptotic normality. van der Vaart (1998) is an

excellent textbook for the discussion of the local asymptotic normality.
4See Porat (1987) and Walker (1995) for alternative derivations of the efficiency bound.
5Another technical difference is that Kakizawa and Taniguchi (1994) examines the limit of the Cramer-Rao
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The reminder of this paper is organized as follows. The next section presents the setting and

introduces Okui’s (2010) estimator and its asymptotic distribution. Section 3 gives the efficiency

bound as well as conditions under which Okui’s estimator achieves the efficiency bound. Section

4 discusses several possible extensions and concludes the paper. All of mathematical proofs are

given in the appendix.

2 Set-up

2.1 The Model

Suppose that we have available a panel data set {yjt} for j = 1, 2, · · · , N and t = 1, 2, · · · , T .

We assume that yjt is generated as a sum of an time-invariant unobserved individual effect

ηj and a time-varying component wjt. Put more precisely, we consider a dynamic panel data

model of the form:

yjt = ηj + wjt,

where wjt is independently and identically distributed (i.i.d.) across individual j and follows

a Gaussian stationary process over time t with mean zero. In this paper we regard individual

effects ηj ’s as parameters. It is assumed that the autocovariance structure of {wjt}t∈Z, where

Z is the set of all integers, is completely characterized by a finite-dimensional parameter θ ∈ Θ

where Θ is some open subset of RL, and we denote the k-th order autocovariance by γk(θ) i.e.

γk(θ) := Eθ[wjtwj,t−k], where Eθ denotes the expectation under θ. Note that, since {wjt}t∈Z is

a Gaussian stationary process, the parameter θ completely determines the law of the process

{wjt}t∈Z. We also impose an absolute summability condition on the autocovariance function

k 7→ γk(θ). Thus far we have assumed the following restrictions on wjt.

Assumption 1.

(i) wjt is i.i.d. across individual j.

(ii) wjt follows a Gaussian stationary process over t with Eθ[wjt] = 0.

(iii)
∑∞

k=−∞ |γk(θ)| < ∞ for every θ ∈ Θ

lower bound so it gives the lower bound of the variances of (exactly) unbiased estimators. while the convolution

theorem gives the lower bound of the variances of regular estimators. Considering regular estimators does allow

estimators to be not exactly unbiased but asymptotically unbiased. Moreover, it is difficult to develop estimators

that are unbiased in finite samples in our setting because of the presence of individual effects.

4



Assumption 1 (iii) guarantees the existence of the spectral density fθ and it can be written

as

fθ(λ) =
1
2π

∞∑
m=−∞

γm(θ) exp(−imλ),

where i :=
√
−1. Also note that, by using the spectral density fθ, the k-th order autocovariance

γk(θ) can be expressed as

γk(θ) =
∫ π

−π
exp(−ikλ)fθ(λ)dλ

=
∫ π

−π
cos(kλ)fθ(λ)dλ,

by the Fourier inversion. This expression for the k-th order autocovariance will be used later in

Section 3.

Under the setting above, this paper examines the asymptotic efficiency for estimation of

γk(θ).

2.2 The k-th order Within-Group Sample Autocovariance Estimator

A natural estimator for γk(θ) may be a within-group (WG) sample autocovariance estimator

γ̂k which is defined by

γ̂k :=
1

N(T − k)

N∑
j=1

T∑
t=k+1

(yjt − ȳj)(yjt−k − ȳj),

where ȳj := 1
T

∑T
t=1 yjt. Note that γ̂k is the sample average of individual sample autocovari-

ances.

Okui (2010) shows that γ̂k is consistent for γk(θ) as N,T → ∞ but has bias of order O(1/T ),

which can be severely large when T is small relative to N . Indeed, Okui’s (2010) result implies

that under the Gaussianity, as N,T → ∞ with N/T 3 → 0,

√
NT

(
γ̂k − γk(θ) +

1
T

VT

)
d→ N

0,

∞∑
j=−∞

{γj(θ)2 + γk+j(θ)γk−j(θ)}

 , (2.1)

where

VT := γ0(θ) + 2
T−1∑
k=1

T − k

T
γk(θ).

Here (1/T )VT is the leading term of the bias and it is easily seen that VT converges to the

long-run variance of {wjt}t∈Z, V =
∑∞

k=−∞ γk(θ), as T → ∞. Okui (2010) proposes to estimate

VT to alleviate the bias of γ̂k. Let V̂T be an estimator of VT and rNT be the inverse of the rate

of convergence of VT such that

V̂T − VT = Op(rNT ) with rNT

√
N/T → 0, (2.2)
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as N,T → ∞. A bias-corrected WG sample autocovariance estimator, denoted γ̃k, is obtained

by simply adding V̂ /T to γ̂k:

γ̃k := γ̂k +
1
T

V̂T .

From (2.1) and (2.2), we obtain the following result.

Theorem 1 (Okui (2010, Theorem 3)). Suppose that Assumption 1 is satisfied. Then, we have

√
NT (γ̃k − γk(θ))

d→ N

0,
∞∑

j=−∞
{γj(θ)2 + γk+j(θ)γk−j(θ)}

 ,

as N,T → ∞ with N/T 3 → 0.

Remark 2.1. Okui (2010, Section 4) constructs an estimator V̂T satisfying the condition (2.2)

by estimating the long-run variance of {wjt}t∈Z by using a kernel method developed by Parzen

(1957) and Andrews (1991). The simulation study conducted in Okui (2010) shows that Okui’s

method effectively reduces the bias in small samples. However, since the interest of this paper

is only in the asymptotic variance of γ̃k, we will not discuss the estimation of V̂T further.

Remark 2.2. The asymptotic variance of γ̃k presented in Theorem 1 has exactly the same

form as that of its time series counterpart (see, e.g., Anderson (1971, Chapter 8)). Also note

that, by Parseval’s identity, it can be written as

∞∑
j=−∞

{γj(θ)2 + γk+j(θ)γk−j(θ)} = 4π

∫ π

−π
f2

θ (λ) cos2(kλ)dλ.

This expression for the asymptotic variance will be used later in Section 3.2 when deriving a

condition under which γ̃k is asymptotically efficient.

Remark 2.3. Let cum(t1, · · · , tp) denote the p-th joint cumulant of (wjt1 , · · · , wjtp)′. If we

assume that (i)
∑∞

t2,··· ,tp=−∞ |cum(0, t3, · · · , tp)| < ∞ for any p ≤ 8 and (ii) there exists M > 0

such that Eθ|wjtwjkwjmwjl| < M for any t, k,m and l , then the Gaussianity assumption on

wjt is not needed for the asymptotic normality of γ̃k(θ). Indeed, Okui (2010) shows without

imposing the Gaussianity assumption on {wjt}t∈Z that

√
NT (γ̃k − γk(θ))

d→ N

0,
∞∑

j=−∞
{γj(θ)2 + γk+j(θ)γk−j(θ) + cum(0,−k, j, j − k)}

 , (2.3)

as N,T → ∞ with N/T 3 → 0. Because the joint cumulants of order greater than 2 are always

zero for multivariate Gaussian random vectors, the asymptotic variance in (2.3) reduces to the

one in Theorem 1 when {wjt}t∈Z is a Gaussian stationary process.
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Remark 2.4. Okui (2010, Remark 2) notes that the order condition N/T 3 → 0 is required

only for ignoring the bias term of order O(1/T 2). He also states that the condition N/T 3 → 0

can be relaxed if we take into account the bias term of order O(1/T 2). However he does not

take such a route because it would make the form of the asymptotic bias more complicated.

For the same reason, we also keep the condition N/T 3 → 0.

One of the main purposes of the paper is to examine the optimality of the asymptotic

distribution of the bias-corrected WG sample autocovariance estimator γ̃k.

3 The Main Results

In this section, we first present the efficiency bound for estimation of the k-th order autoco-

variance γk(θ) and then provide a condition under which a bias-corrected WG autocovariance

estimator achieves the efficiency bound. Lastly, we provide a brief description of the proofs of

the main results.

3.1 The Efficiency Bound

This subsection gives the lower bound for asymptotic variances of any regular estimators of

γk(θ).6 To this end, the following assumptions are needed.

The first assumption is concerned with the individual effects ηj ’s:

Assumption 2.

(i) limN→∞(1/N)
∑N

j=1 η2
j exists and is finite.

(ii) (maxj≤N η2
j )/N = o(1) as N → ∞.

Next we impose some restrictions on spectral density fθ:

Assumption 3.

(i) θ 7→ fθ(λ) is differentiable at any point θ ∈ Θ.

(ii)

lim
ε→0

sup
λ

|f(θ + ε) − f(θ)| = 0, ∀θ ∈ Θ.

6Intuitively speaking, a sequence of estimators is regular if a disappearing small change of parameters should

not change its limit distribution at all (van der Vaart (1998, p115)). For a precise definition, see Appendix A.2.

The regularity requirement is a desirable property for reasonable estimators to have and not so restrictive. For

a detailed study of the regularity condition, see e.g. Bickel et al. (1993, Chapter 2).
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(iii) ∫ π

−π

∣∣∣∣ ∂

∂θm
fθ(λ)

∣∣∣∣2 dλ < ∞, ∀m = 1, 2, · · · , L, ∀θ ∈ Θ,

where θm is the m-th component of θ, and

lim
ε→0

∫ π

−π

∣∣∣∣ ∂

∂θm
fθ+ε(λ) − ∂

∂θm
fθ(λ)

∣∣∣∣2 dλ = 0, ∀m = 1, 2, · · · , L, ∀θ ∈ Θ.

(iv) There exists a positive number c > 0 such that

fθ(λ) > c, ∀θ ∈ Θ, ∀λ ∈ [−π, π].

Finally, we impose the following restriction on the covariance matrix of wj := (wj1, wj2, · · · , wjT )′:

Assumption 4. limT→∞(1/T )1′
T Ω(θ)−11T exists and is finite for every θ ∈ Θ, where ΩT (θ) :=

Eθ[wjw
′
j ] and 1T denotes a T -dimensional vector whose components are all 1’s.7

Remark 3.1. Assumption 2 is slightly stronger than the assumption imposed on individual

effects in Hahn and Kuersteiner (2002). They only assume that (1/N)
∑N

j=1 η2
j = O(1). The

condition (ii) is used to show the asymptotic normality of the score function of our dynamic

panel data model with individual effects. For details, see the proof of Lemma 6 in Appendix

A.3.

Remark 3.2. Assumption 3 is similar to the assumptions imposed in Davies (1973, A 1.1 to A

1.4). The difference is that Davies (1973) states these conditions in terms of the autocovariance

function k 7→ γk(θ), while we state them in terms of the spectral density fθ. The reason

that we state conditions in terms of spectral density fθ is that these conditions are easier to

check by doing so. As an example, let us consider the case where {wjt}t∈Z follows a stationary

ARMA(p, q) process:

wjt = a1wj,t−1 + a2wj,t−2 + · · · + apwj,t−p + ujt + b1uj,t−1 + · · · + bj,t−quj,t−q,

where ujt is i.i.d.N(0, σ2) across j and t. We also assume that the polynomials a(z) := 1 −

a1z − a2z
2 − · · · − apz

p and b(z) := 1 + b1z + b2z
2 + · · · + bqz

q have no common zeros and that

a(z) and b(z) have no zeros on the unit circle. Then the spectral density of {wjt}t∈Z is given by

fθ(λ) =
σ2

2π

|b(e−iλ)|2

|a(e−iλ)|2
, (3.1)

where θ = (a1, · · · , ap, b1, · · · , bq, σ
2). After some algebra, we can easily show that the spectral

density of the ARMA model satisfies all the conditions in Assumptions 3.
7The matrix ΩT (θ) is nonsingular by Assumption 3 (iv) (See e.g. Gray (2006, Theorem 5.2)). However,

Assumption 3 does not guarantee the existence of limT→∞(1/T )1′
T Ω(θ)−11T .
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Remark 3.3. When {wjt}t∈Z follows a Gaussian stationary AR(p) process as specified in

Remark 3.2 (i.e. set q = 0), Assumption 4 is automatically satisfied. In fact, the arguments in

section 5.1.2 in Amemiya (1985) give

lim
T→∞

1
T

1′
T Ω(θ)−11T =

(1 − a1 − · · · − ap)2

σ2
.

Note that the limit coincides with the inverse of the long-run variance of the AR(p) process.

We are now ready to provide the efficiency bound for any regular estimators of the k-th

order autocovariance γk(θ).

Theorem 2. Suppose that Assumptions 1 to 4 are satisfied. Define

Γ(θ) :=
1
4π

∫ π

−π

∂

∂θ′
fθ(λ)

∂

∂θ
fθ(λ)

dλ

f2
θ (λ)

.

and assume that the matrix Γ(θ) is nonsingular. Also suppose that τN,T is any regular estimator

of γk(θ) as N,T → ∞. If the limit law of τNT has variance Σθ, then

Σθ ≥
{∫ π

−π
cos(kλ)

∂

∂θ′
fθ(λ)dλ

}
Γ(θ)−1

{∫ π

−π
cos(kλ)

∂

∂θ
fθ(λ)dλ

}
∀θ ∈ Θ. (3.2)

Proof. See Appendix A.3.

Remark 3.4. A useful sufficient condition for Γ(θ) to be nonsingular is that for each a ∈ RL

and each θ ∈ Θ, there exists some non-null set of λ such that

a′
∂

∂θm
fθ(λ) 6= 0

(this is a special case of Theorem 4.7 in Davies (1973)). If {wjt}j∈Z is a stationary ARMA(p, q)

process as specified in Remark 3.2 and so has spectral density (3.1), then this sufficient condition

is obviously satisfied.

This theorem shows that the right hand side of (3.2) is the efficiency bound for any regular

estimators of γk(θ). In the time series literature, the matrix Γ(θ) is called a Gaussian Fisher

information matrix associated with spectral density fθ (see e.g. Taniguchi and Kakizawa (2000,

p58)). This name is after the fact that the matrix Γ(θ) is the limit of small-sample Fisher

information matrices for a Gaussian stationary process with spectral density fθ.8 We also note

that the efficiency bound in Theorem 2 can be rewritten as{
∂

∂θ′
γk(θ)

}
Γ(θ)−1

{
∂

∂θ
γk(θ)

}
,

8The closed form of the matrix Γ(θ) for ARMA models is available in, e.g., Box and Jenkins (1970).
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because Assumptions 1(iii) and 3(i) imply that

∂

∂θ
γk(θ) =

∫ π

−π
cos(kλ)

∂

∂θ
fθ(λ)dλ.

This expression demonstrates that the efficiency bound has the same form as the limit of Crámer-

Rao lower bounds for estimation of γk(θ) in the time series setting.

Kakizawa and Taniguchi (1994) study the asymptotic efficiency of sample autocovariances

for a Gaussian stationary process {Xt}t∈Z with mean zero and spectral density fθ. They cal-

culate the lower bound for asymptotic variances of any unbiased estimators of the k-th order

autocovariance Eθ[XtXt−k], which is the limit of small-sample Crámer-Rao lower bounds (here

note that the k-th order sample autocovariance (1/(T − k))
∑T

t=k+1 XtXt−k is unbiased for

Eθ[XtXt−k]). The lower bound they derive has exactly the same form as the lower bound given

in Theorem 2.

An important implication of this finding is that the presence of individual effects does not

affect the form of the efficiency bound. This result is interesting in the sense that the presence

of an infinite dimensional parameter (note that we treat individual effects as parameters whose

cardinality tends to infinity as the sample size goes to infinity) does not affect the efficiency

bound.

3.2 A Condition for γ̃k to be Asymptotically Efficient

We now provide a conditions under which bias-corrected WG sample autocovariance estimators

γ̃k are asymptotically efficient. We say that a sequence of estimators is asymptotically efficient

if it is regular and its asymptotic variance achieves the efficiency bound given by a convolution

theorem.

Theorem 3. Suppose that Assumptions 1 to 4 are satisfied. Then a bias-corrected WG sample

autocovariance estimator γ̃k(θ) is asymptotically efficient if and only if there exists c ∈ RL such

that

f2
θ (λ) cos(kλ) + c′

∂

∂θ
fθ(λ) = 0, ∀λ. (3.3)

In particular, if {wjt}t∈Z is a Gaussian stationary ARMA(p, q) process as specified in Remark

3, then a bias-corrected WG sample autocovariance estimator γ̃k(θ) is asymptotically efficient

if and only if

p ≥ q and 0 ≤ k ≤ p − q. (3.4)

The condition (3.3) for asymptotic efficiency of γ̃k is the same as that for time series analysis

obtained by Kakizawa and Taniguchi (1994). They comment that the condition (3.3) is easy
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to check. They also show that, for the case of a Gaussian stationary ARMA(p, q) process, the

condition (3.3) reduces to (3.4), which is a condition first derived by Porat (1987). The condition

(3.4) implies that, if {wjt}t∈Z is a stationary AR(p) process and k ≤ p, we can efficiently

estimate γk(θ) by using γ̃k. Porat (1987) states that this is not so surprising in time series

contexts because AR coefficients can be efficiently estimated by Yule-Walker estimators, which

are functions of sample autocovariances. On the other hand, if {wjt}t∈Z is a Gaussian MA(q)

process, none of the bias-corrected WG sample autocovariance estimators are asymptotically

efficient. As an intermediate case, if {wjt}t∈Z is, for example, a stationary ARMA(3, 1) process,

then γ̃k is asymptotically efficient if and only if 0 ≤ k ≤ 2. The results for MA models and

ARMA models are non-trivial and interesting as argued by Porat (1987).

3.3 A Brief Sketch of the Proofs of the Theorems

The efficiency bound given in Theorem 2 is derived by using a Hajék-type convolution theorem.9

We give a brief explanation of a convolution theorem along with a short description of the steps

for deriving the efficiency bound for γk(θ).

A convolution theorem is a very powerful tool for providing the efficiency bound for any

regular estimators of parameters of interest. More precisely, a convolution theorem states that

the asymptotic distribution of any regular estimator can be expressed as a convolution of two

probability distributions: one is a normal distribution, which has mean zero and is common for

all regular estimators, and the other is some ‘noise’ distribution, which varies with estimators.

Since a convolution is the distribution of the sum of two independent random variables, a

convolution theorem implies that the asymptotic variance of any regular estimator is no smaller

than the variance of the normal distribution in the convolution representation. In our case,

Theorem 7 in the Appendix yields

√
NT (τNT − γk(θ))

d→

N

(
0,

{∫ π

−π
cos(kλ)

∂

∂θ′
fθ(λ)dλ

}
Γ(θ)−1

{∫ π

−π
cos(kλ)

∂

∂θ
fθ(λ)dλ

})
∗ W,

as N,T → ∞, where W is some probability distribution that may be different for each τNT and

“*” is the convolution operator. This expression for the limit distribution implies Theorem 2.

In our setting, there are as many individual effects as the cross-sectional sample size, so we

have to deal with an infinite-dimensional parameter of the form (θ, η1, η2, · · · ). A conventional

9For convolution theorems in cross section contexts, see e.g. Bickel et al. (1993) and van der Vaart (2000).

These references review not only parametric cases but also semiparametric situations. For time series contexts,

see, e.g., Taniguchi and Kakizawa (2000).
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finite-dimensional convolution theorem cannot be applied to obtain the efficiency bound. We

follow Hahn (2002) and Hahn and Kuersteiner (2002) and apply the infinite-dimensional con-

volution theorem by van der Vaart and Wellner (1996), which allows a parameter space to be

a Banach space.10 We note that the infinite-dimensional convolution theorem of van der Vaart

and Wellner is general enough to cover our estimation problem, but the theorem is too abstract

to give us a direct guidance to calculate the explicit form of the efficiency bound for γk(θ).

Hahn (2002) gives a useful characterization of the infinite-dimensional convolution theorem for

a special case where the Banach-valued parameter can be decomposed into a finite-dimensional

part of interest and a (possibly) infinite-dimensional part which is considered to be a nuisance

parameter. However, we cannot directly apply his result because Hahn’s specialization only

provides the efficiency bound for estimation of the finite-dimensional parameter itself, while we

are interested in a real-valued functional of the finite-dimensional parameter, i.e., γk(θ). For

this reason, we slightly modify Hahn’s characterization of the infinite-dimensional convolution

theorem to make it appropriate for our situation (see Appendix A.2). The characterization

shows that the lower bound involves the second moments of the residuals in the projection of

the score function of the finite-dimensional parameter into the space of the score functions of

the infinite-dimensional parameter. In Appendix A.3, we use this characterization to calculate

the explicit form of the efficiency bound for γk(θ).

A key condition for applying a Hajék-type convolution theorem is the local asymptotic

normality (LAN) of the model considered. A sequence of statistical experiments or models is said

to be LAN if the local log likelihood ratio process admits a certain quadratic stochastic expansion

with the first term being asymptotically normal and the second term being −1/2 times the

variance of the limit distribution of the first term. For a precise definition of the local asymptotic

normality, see Appendix A.2. Heuristically speaking, when the LAN property is satisfied, the

sequence of statistical experiments can be approximated by a certain normal limit experiment.

This means that any sequence of statistics which has a limit law can be approximated by some

randomized statistic in a normal experiment. The proof of a convolution theorem proceeds

based on this approximation. For details on the ‘limits of experiments’ arguments, see van der

Vaart (1998, Chapter 9). The LAN condition required in the infinite-dimensional convolution

theorem is more general than that in a conventional finite-dimensional one. In Appendix A.3, we

show that our dynamic panel data model with individual effects is locally asymptotically normal

in the sense of van der Vaart and Wellner (1996) (see Theorem 6 in the Appendix). As might

be expected, the derivation of the LAN property of our general dynamic panel model is non-

10Appendix A.2 briefly reviews their results.
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trivial because of the presence of the infinite-dimensional parameter (η1, η2, · · · ) and because

we consider double asymptotics. This derivation is one of the major technical contributions of

the paper.

Remark 3.5. Let ψ be a differentiable function from Θ into RM . In Theorem 7 in the Appendix,

we provide the efficiency bound for estimation of ψ(θ). Thus, the efficiency bound for estimation

of θ itself can be derived from Theorem 7. Indeed, it can be easily shown that the efficiency

bound for estimation of θ is given by Γ(θ)−1, the inverse of a Gaussian Fisher information

matrix. Noting that our dynamic panel data model is general enough to include panel AR(p),

panel MA(q) and panel ARMA(p, q) models with Gaussian innovations and individual effects,

it is seen that one can use our result to assess the asymptotic efficiency of autoregressive and

moving-average coefficient estimators for those models. However, such efficiency analysis goes

beyond the scope of this paper.

Theorems 3 is proved by following the argument of Kakizawa and Taniguchi (1994). The

representation of the asymptotic variance given in Remark 2.2 indicates that γ̃k achieves the

efficiency bound shown in Theorem 3 when∫ π

−π
f2

θ (λ) cos2(kλ)dλ =
{∫ π

−π
cos(kλ)

∂

∂θ′
fθ(λ)dλ

}{∫ π

−π

∂

∂θ′
fθ(λ)

∂

∂θ
fθ(λ)

dλ

f2
θ (λ)

}−1

{∫ π

−π
cos(kλ)

∂

∂θ
fθ(λ)dλ

}
. (3.5)

The generalized Cauchy-Schwarz inequality, which is provided in Lemma 3 in Kakizawa and

Taniguchi (1994), implies that the equality (3.5) holds if and only if the condition (3.3) is

satisfied. Example 1 in Kakizawa and Taniguchi (1994) demonstrates that, if the process follows

an ARMA(p, q) model so that the spectral density has the form given in Remark 3.2, the

condition (3.3) reduces to p ≥ q and 0 ≤ k ≤ p − q. We note that Kakizawa and Taniguchi’s

(1994) derivation of the condition (3.3) only depends on the forms of the lower bound and the

asymptotic variance of sample autocovariances. Thus, we can use their argument without any

modification even though we consider panel data settings while their result is for time series.

4 Conclusion

In this paper, we investigate the asymptotic efficiency of autocovariance estimation in a general

dynamic panel data model with individual effects when both the cross-sectional sample size and

the length of time series tend to infinity. By using the infinite dimensional convolution theorem

of van der Vaart and Wellner (1996), the efficiency bound for regular estimators of the k-th

order autocovariance is derived. It should be emphasized that the derivation is non-trivial and

13



technically involved because of the presence of individual effects. In view of the lower bound,

we provide a necessary and sufficient condition for Okui’s (2010) bias-corrected WG sample

autocovariance estimators to achieve the lower bound. In particular, we show that when the

individual dynamics follows a Gaussian stationary ARMA(p, q) model, the bias-corrected WG

sample autocovariance estimator at lag k is asymptotically efficient if and only if p− q ≥ 0 and

0 ≤ k ≤ p − q.

In the process of the derivation of the efficiency bound for autocovariances, we also provide

the lower bound for estimation of the model parameter itself. Note that our setting is general

enough to include dynamic panel data models such as panel AR(p), panel MA(q) and panel

ARMA(p, q) models with Gaussian innovations and individual effects. Thus, our results can be

applicable, for example, to assess the asymptotic efficiency of autoregressive and/or moving-

average coefficient estimators proposed for those models. We are currently working on such a

line of efficiency analysis.

A Appendix

A.1 Preliminaries

In this subsection, we list some properties concerning covariance matrices for stationary pro-

cesses associated with spectral density fθ. These are frequently used in the sequel. Before

stating these properties, we begin with some notational conventions. First we denote a trace

operator by tr[·]. For any matrix A, we define ‖A‖E := (tr(A′A))1/2 (the Euclidean norm) and

‖A‖B := sup‖x‖E=1 ‖Ax‖E (the Banach norm) where x is a vector conformable with A. For

any Euclidean vector a, these two norms coincide and is denoted by ‖a‖E . Note that, for any

conformable matrices A and B, we have the relation ‖AB‖E ≤ ‖A‖B‖B‖E , which is also useful

in the subsequent subsections.

Lemma 1. Suppose that Assumption 1 and 3 are satisfied. Then the following hold.

(i)

‖ΩT (θ)‖B ≤ 2π sup
λ

fθ(λ) ≤
∞∑

k=−∞
|γk(θ)| < ∞,

‖ΩT (θ + ε) − ΩT (θ)‖B ≤ 2π sup
λ

|fθ+ε(λ) − fθ(λ)| → 0 as ε → 0.

(ii)

‖Ω−1
T (θ)‖B ≤ 1

2π
sup

λ
f−1

θ (λ) < ∞,
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sup
‖ε‖E<δ

‖Ω−1
T (θ + ε)‖ ≤ 1

2π
sup

‖ε‖E<δ
sup

λ
|f−1

θ+ε(λ)| < ∞ for some δ > 0.

(iii)

1
T

∥∥∥∥ ∂

∂θm
ΩT (θ)

∥∥∥∥2

E

≤
∞∑

k=−∞

∣∣∣∣ ∂

∂θm
γk(θ)

∣∣∣∣2 =
∫ π

−π

∣∣∣∣ ∂

∂θm
fθ(λ)

∣∣∣∣2 dλ < ∞,

1
T

∥∥∥∥ ∂

∂θm
ΩT (θ + ε) − ∂

∂θm
ΩT (θ)

∥∥∥∥2

E

≤
∞∑

k=−∞

∣∣∣∣ ∂

∂θm
γk(θ + ε) − ∂

∂θm
γk(θ)

∣∣∣∣2
=

∫ π

−π

∣∣∣∣ ∂

∂θm
fθ+ε(λ) − ∂

∂θm
fθ(λ)

∣∣∣∣2 dλ → 0 as ε → 0.

(iv)

1√
T

∥∥∥∥ ∂

∂θm
ΩT (θ)

∥∥∥∥
B

→ 0 as T → ∞.

Proof. This is a special case of Corollary 3.3 in Davies (1973), although there is a minor differ-

ence: Davies (1973) uses {exp(−2πimλ)}m∈Z as a complete orthonormal set of L2[0, 1], whereas

we use
{

1
2π exp(−imλ)

}
m∈Z as a complete orthonormal set of L2[−π, π]. However, this is not

an essential difference.

A.2 A Convolution Theorem

In order to derive the efficiency bound for any regular estimators of γk(θ), we will employ

the infinite dimensional convolution theorem by van der Vaart and Wellner (1996). In this

subsection, we briefly review their result and then specialize it to the case appropriate to our

situation (Theorem 5 below).

To begin with, we introduce some of their notation and definitions. Let H be a linear

subspace of a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. For each N and h, let PN,h

be a probability measure on a measurable space (XN ,AN ). Consider a problem of estimating

a parameter κN,h given an observation with law PN,h. Let {∆h : h ∈ H} be an iso-Gaussian

process indexed by H: a Gaussian process with mean zero and covariance function E∆h1∆h2 =

〈h1, h2〉. The sequence of experiments {XN ,AN , PN,h : h ∈ H} or simply {PN,h : h ∈ H} is said

to be locally asymptotically normal if we can write

log
dPN,h

dPN,0
= ∆N,h − 1

2
‖h‖2,

for a sequence of random variables ∆N,h such that, as N → ∞,

∆N,h
0Ã ∆h. (A.1)
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Here hÃ denotes weak convergence under PN,h. By the iso-Gaussianity assumption on {∆h : h ∈

H}, the condition (A.1) is equivalent to saying that, for any finite subset {h1, h2, · · · , hd} ⊆ H,
∆N,h1

∆N,h2

...

∆N,hd


0Ã N(0, (〈hi, hj〉)) (A.2)

as N → ∞ where (〈hi, hj〉) is a d × d matrix whose (i, j)-th component is 〈hi, hj〉. If ∆N,h is

linear in h, i.e., for any positive integer d and any a = (a1, a2, · · · , ad)′ ∈ Rd,

∆N,
Pd

i=1 aihi
=

d∑
i=1

ai∆N,hi
, (A.3)

then the conditon

∆N,h
0Ã N(0, ‖h‖2) ∀h

is equivalent to (A.2). This follows from an application of the Cramér-Wold device.

The sequence of parameters κN (h) is assumed to take values in a Banach space B. It is also

assumed to be regular in the sense that, as N → ∞,

rN (κN (h) − κN (0)) → κ̇ ∀h ∈ H

for some bounded, linear map κ̇ : H → B and certain linear maps rN : B → B. A sequence of

estimators τN is said to be regular with respect to rN if, as N → ∞,

rN (τN − κN (h)) hÃ L ∀h ∈ H.

It should be emphasized that this definition requires that the limit distribution L be the same

across h. Let B∗ denotes the dual space of B. The bounded linear map κ̇ : H 7→ B has an

adjoint map κ̇∗ : B∗ → H̄ where H̄ is the completion of H. This is determined by the relation

〈κ̇∗b∗, h〉 = b∗κ̇(h)

for b∗ ∈ B∗.

Under the setting above, van der Vaart and Wellner (1996) establish the following infinite

dimensional convolution theorem:

Theorem 4 ((van der Vaart and Wellner, 1996, Theorem 3.11.2)). Assume that (PN,h : h ∈

H) is locally asymptotically normal. Also assume that the sequence of parameters κN (h) and

estimators τN are regular. Then, the limit distribution L of rN (τN −κN (0)) equals a sum G+W

of independent, tight, Borel measurable random elements in B such that

b∗G ∼ N(0, ‖κ̇∗b∗‖2) ∀b∗ ∈ B∗.
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Hahn (2002) specializes the infinite-dimensional convolution theorem above for a case where

a component of h is a real number, so that we can write, say, h = (δ, ξ) for some δ ∈ R.11

In his specialization, he fix δ0 ∈ R and sets δ0 + δ/rN as a parameter to be estimated i.e.

κN (h) = κN (δ, ξ) = δ0 + δ/rN . In our case, the parameter to be estimated is the k-th order

autocovariance which is parameterized by θ0 + θ̃/rN i.e. κN (h) = κN (θ̃, η̃) = γk(θ0 + θ̃/rN )

where rN =
√

NT (for the details of this parameterization, see the next subsection). Obviously

our situation is not covered by Hahn’s theorem, so that we need to modify Hahn’s result in

order to cover our setup. The following theorem is sufficient for our purpose.

Theorem 5. Suppose that {PN,h : h ∈ H} is locally asymptotically normal. Also suppose

that (i) h = (δ, ξ) for δ ∈ RL and ξ ∈ Ξ (an inner product space), i.e., H = RL × Ξ, (ii)

the inner product on H is a sum of inner products on RL and Ξ, (iii) rN is a real sequence

with rN → ∞ and κN (h) := ψ(δ0 + δ/rN ) for some fixed δ0 ∈ RL and a totally differentiable

function ψ : RL → RM with its derivative ψ̇, (iv) ∆h = δ′∆1 + ∆2(ξ) for an L-dimensional

random vector ∆1 = (∆(1)
1 , ∆(2)

1 , · · · , ∆(L)
1 )′ and a random variable ∆2(ξ) and (v) {∆2(ξ) : ξ ∈

Ξ} is a linear subspace of a set of square-integrable random variables on the real line. Let

∆̃1 = (∆̃(1)
1 , ∆̃(2)

1 , · · · , ∆̃(L)
1 )′ be a vector of residuals in the projection of ∆(j)

1 on the closure of

{∆2(Ξ) : ξ ∈ Ξ}. We also assume that (vi) the matrix E∆̃1∆̃′
1 is nonsingular.Then for any

regular estimator τN , we have, as N → ∞,

rN (τN − κN (0)) d→ N

(
0, ψ̇(δ0)

(
E∆̃1∆̃′

1

)−1
ψ̇(δ0)′

)
∗ W

where W is some distribution on the real line and ∗ denotes a convolution operator.

Proof. We extend the proof of Theorem 4 in Hahn (2002). First consider the case when ψ is

real-valued. Since ψ is assumed to be differentiable, it is easy to see that κN (h) = ψ (δ0 + δ/rN )

is regular. In fact, as N → ∞,

rN (κN (h) − κN (0)) = rN

(
ψ

(
δ0 +

δ

rN

)
− ψ(δ0)

)
→ ψ̇(δ0)δ,

and the row vector ψ̇(δ0) obviously defines a bounded linear operator from RL into R.

For d ∈ R, we write κ̇∗ : d 7→ κ̇∗(d) = (k̇∗
1(d), κ̇∗

2(d)) 12 where κ̇∗
1(d) is the L-dimensional

Euclidean part of κ̇∗(d). Note that the adjoint operator k̇∗ is determined by the relation

〈(κ̇∗
1(d), κ̇∗

2(d)), (δ, ξ)〉 = dψ̇(δ0)δ ∀(δ, ξ).

Now setting d = 1 and writing (κ̇∗
1, κ̇

∗
2) := (k̇∗

1(1), κ̇∗
2(1)), we have

〈(κ̇∗
1, κ̇

∗
2), (δ, ξ)〉 = ψ̇(δ0)δ ∀(δ, ξ). (A.4)

11Note that the notation here is slightly different from Hahn’s (2002).
12Note that B = R and we may and do identify the dual space R∗ with R.
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In particular, substituting (δ, ξ) = (κ̇∗
1, κ̇

∗
2) yields

‖(κ̇∗
1, κ̇

∗
2)‖2 = ψ̇(δ0)κ̇∗

1. (A.5)

Below we will show that

E∆̃1∆̃′
1κ̇

∗
1 = ψ̇(δ0)′. (A.6)

If this holds, then the equality (A.5) yields the desired result for the case of a real-valued ψ.

To show (A.6), we write κ̇∗
1 = (κ̇∗

11, κ̇
∗
12, · · · , κ̇∗

1L)′ and assume for simplicity only that κ̇∗
1j 6= 0

for all j = 1, 2 · · · , L (a proof would be similar but more complicated if κ̇∗
1j = 0 for some j). Let

ei be the i-th column vector of an L × L identity matrix. Substituting δ = ei into the equality

(A.4), we have

〈(κ̇∗
1, κ̇

∗
2), (ei, ξ)〉 = ψ̇(δ0)ei ∀ξ.

Furthermore, observe that

〈(κ̇∗
1, κ̇

∗
2), (ei, ξ)〉 = E

[(
∆′

1κ̇
∗
1 + ∆2 (κ̇∗

2)
) (

∆(i)
1 + ∆2(ξ)

)]
=

L∑
j=1

κ̇∗
1jE

[(
∆(j)

1 + ∆2

(
ξ∗j

))(
∆(i)

1 + ∆2(ξ)
)]

for some ξ∗j such that ∆2(ξ∗j ) = (1/Lk∗
1j)∆2(k∗

2). Thus we have

L∑
j=1

κ̇∗
1jE

[(
∆(j)

1 + ∆2

(
ξ∗j

))(
∆(i)

1 + ∆2(ξ)
)]

= ψ̇(δ0)ei ∀ξ. (A.7)

From this, it follows that

L∑
j=1

κ̇∗
1jE

[(
∆(j)

1 + ∆2

(
ξ∗j

))
∆2(ξ)

]
= constant ∀ξ.

This reveals that
L∑

j=1

κ̇∗
1jE

[(
∆(j)

1 + ∆2

(
ξ∗j

))
∆2(ξ)

]
= 0 ∀ξ. (A.8)

Now recalling that ∆̂(j)
1 is a projection of ∆(j)

1 on the closure of {∆2(ξ) : ξ ∈ Ξ}, we have

E
[
∆(j)

1 ∆2(ξ)
]

= E
[
∆̂(j)

1 ∆2(ξ)
]

∀ξ.

In addition, there exits a sequence ∆̂(i)
1n in {∆2(ξ) : ξ ∈ Ξ} such that ∆̂(i)

1n → ∆̂(i)
1 in L2 as

n → ∞, and ∆̂(i)
1n + ∆2(ξ∗i ) are all in {∆2(ξ) : ξ ∈ Ξ}. Thus from (A.8) it follows that

L∑
j=1

κ̇∗
1jE

[(
∆̂(j)

1 + ∆2

(
ξ∗j

))(
∆̂(i)

1n + ∆2(ξ∗i )
)]

= 0 ∀n.
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By continuity of inner product, we have
L∑

j=1

κ̇∗
1jE

[(
∆̂(j)

1 + ∆2

(
ξ∗j

))(
∆̂(i)

1 + ∆2(ξ∗i )
)]

= 0.

Multiplying the both hand sides of the last display by κ̇∗
1i and summing up over i = 1, 2, · · · , L,

we obtain

E

 L∑
j=1

κ̇∗
1i

(
∆̂(j)

1 + ∆2(ξ∗j )
)2 = 0.

This implies that, almost surely,

−
L∑

j=1

κ̇∗
1j∆̂

(j)
1 =

L∑
j=1

κ̇∗
1j∆2(ξ∗j ).

Substite this into (A.7), replace ∆2(ξ) by ∆̂(i)
1n and let n → ∞ to obtain

L∑
j=1

κ̇∗
1jE

[
∆̃(j)

1 ∆̃(i)
1

]
= ψ̇(δ0)ei ∀i = 1, 2, · · · , L.

Stacking these equalities over i yields the desired identity (A.6). This completes the proof for

the case of a real-valued ψ.

Based on the above result, we next consider a more general case where ψ is M -dimensional.

Since it is assumed that τN is regular, there exists some M -dimensional random vector L such

that

rN

(
τN − ψ

(
δ0 +

δ

rN

))
hÃ L ∀h ∈ H.

Thus, for any fixed a ∈ RM , we have

rN

(
a′τN − a′ψ

(
δ0 +

δ

rN

))
hÃ a′L ∀h ∈ H,

which means that a′τN is regular for a′ψ(δ0 + δ
rN

). It follows from the convolution result for a

one-dimensional function ψ that

rN

(
a′τN − a′ψ

(
δ0 +

δ

rN

))
0Ã Ga + Wa

where Ga and Wa are independent random variables with

Ga ∼ N

(
0, a′ψ̇(δ0)

(
E∆̃1∆̃′

1

)−1
ψ̇(δ0)′a

)
.

Now we write Ga = a′G where

G ∼ N

(
0, ψ̇(δ0)

(
E∆̃1∆̃′

1

)−1
ψ̇(δ0)′

)
.

Because a′L = a′G + Wa, we can write Wa = a′(L − G). Defining W := L − G, we have

a′L = a′(G+W ). Since a is arbitrary, the Cramer-Wold device implies that L = G+W , which

completes the proof for an M -dimensional case.
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A.3 Derivation of the Lower Bound

In this subsection, we first show the local asymptotic normality of our panel data model with

individual effects in the sense of van der Vaart and Wellner (1996) and then prove Theorem 2,

which presents the efficiency bound for estimation of γk(θ).

To this end, we let yj = (yj1, yj2, · · · , yjT )′ and define η to be a sequence of individual effects

ηj ’s, i.e., η := (η1, η2, · · · ). Now fix (θ, η) and let (θ̃, η̃) be local parameters. We localize the

parameters around (θ, η) as follows:

θ +
θ̃√
NT

and η +
η̃√
NT

.

We also define h := (η̃, θ̃). For simplicity of notation, we write Ωθ̃ := ΩT

(
θ + θ̃√

NT

)
. Note

that, in this notation, Ω0 = ΩT (θ).

The local log likelihood ratio of our panel data model with individual effects is given by

log
dPN,h

dPN,0
=

N

2
log detΩ0 −

N

2
log detΩθ̃ +

1
2

N∑
j=1

(yj − ηj1T )′Ω−1
0 (yj − ηj1T )

−1
2

N∑
j=1

(
yj −

(
ηj +

η̃j√
NT

)
1T

)′
Ω−1

θ̃

(
yj −

(
ηj +

η̃j√
NT

)
1T

)
=

N

2
log detΩ0 −

N

2
log detΩθ̃

+
1
2

N∑
j=1

(yj − ηj1T )′Ω−1
0 (yj − ηj1T ) − 1

2

N∑
j=1

(yj − ηj1T )′Ω−1

θ̃
(yj − ηj1T )

+
1√
NT

N∑
j=1

η̃j1′
T Ω−1

θ̃
(yj − ηj1T ) − 1

2NT

N∑
j=1

η̃2
j1

′
T Ω−1

θ̃
1T .

Since yj − ηj1T = wi under PN,0, we can write the log likelihood ratio as follows:

log
dPN,h

dPN,0
=

N

2
log detΩ0 −

N

2
log detΩθ̃

+
1
2

N∑
j=1

w′
jΩ

−1
0 wj −

1
2

N∑
j=1

w′
jΩ

−1

θ̃
wj

+
1√
NT

N∑
j=1

η̃j1′
T Ω−1

θ̃
wj −

1
2NT

N∑
j=1

η̃2
j1

′
T Ω−1

θ̃
1T .

Lemma 2. Under PN,0, as N → ∞ and T → ∞,

N

2
log detΩ0 −

N

2
log detΩθ̃ +

1
2

N∑
j=1

w′
jΩ

−1
0 wj −

1
2

N∑
j=1

w′
jΩ

−1

θ̃
wj

=
1

2
√

NT

N∑
j=1

{
w′

jΩ
−1
0 (θ̃∇Ω0)Ω−1

0 wj − tr
(
Ω−1

0 (θ̃∇Ω0)
)}

− 1
4T

tr
(
Ω−1

0 (θ̃∇Ω0)Ω−1
0 (θ̃∇Ω0)

)
+ opN,0(1)
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where

(θ̃∇Ω0) :=
L∑

m=1

θ̃m
∂

∂θm
Ω(θ).

Proof. This proof is similar to that of Theorem 4.4 in Davies (1973). The difference is that we

take into account cross sections and use double asymptotics. Thus several modifications are

needed.

Let us define

aNT :=
N

2
log detΩ0 −

N

2
log detΩθ̃ +

1
2

N∑
j=1

w′
jΩ

−1
0 wj −

1
2

N∑
j=1

w′
jΩ

−1

θ̃
wj

− 1
2
√

NT

N∑
j=1

{
w′

jΩ
−1
0 (θ̃∇Ω0)Ω−1

0 wj − tr
(
Ω−1

0 (θ̃∇Ω0)
)}

+
1

4T
tr

(
Ω−1

0 (θ̃∇Ω0)Ω−1
0 (θ̃∇Ω0)

)
.

It suffices to show that Eθ[aNT ] and Varθ[aNT ] tend to 0 as N,T → ∞.

Note that, for any symmetric matrix A, we have Eθ[w′
jAwj ] = trace(AΩ0). From this, it

follows that

Eθ[aNT ] =
N

2

{
log det(Ω0Ω−1

θ̃
) + tr(IT − Ω0Ω−1

θ̃
)
}

+
1

4T
tr

(
Ω−1

0 (θ̃∇Ω0)Ω−1
0 (θ̃∇Ω0)

)
,

where IT denotes a T ×T identity matrix. Setting ANT := Ω0Ω−1

θ̃
− I = (Ω0−Ωθ̃)Ω

−1

θ̃
, we have

EθaNT =
N

2

{
log det(IT + ANT ) − tr(ANT ) +

1
2
tr(A2

NT )
}

+
1

4T

{
tr

(
Ω−1

0 (θ̃∇Ω0)Ω−1
0 (θ̃∇Ω0)

)
− NT tr

(
Ω−1

θ̃
(Ω0 − Ωθ̃)Ω

−1

θ̃
(Ω0 − Ωθ̃)

)}
.(A.9)

It is known that, for any symmetric matrix A with ‖A‖B < 1, we have

| log det(I + A) − tr(A) +
1
2
tr(A2)| ≤ 1

3
‖A‖B‖A‖2

E(1 − ‖A‖B)−3

where I is the identity matrix.13 Further, since ‖Ω0−Ωθ̃‖B tends to zero and ‖Ω−1

θ̃
‖B is bounded

as N,T → ∞ by Lemma 1 (i) and (ii), we see that ‖ANT ‖B ≤ ‖Ω0 − Ωθ̃‖B‖Ω−1

θ̃
‖B = o(1) as

N,T → ∞. Thus, for sufficiently large N and T , the first term of the right hand side of (A.9)

is bounded by

N

6
‖ANT ‖B‖ANT ‖2

E(1 − ‖ANT ‖B)−3 ≤ 1
6T

‖θ̃∇Ωθ̄‖2
E‖Ω0 − Ωθ̃‖B‖Ω−1

θ̃
‖3

B(1 − ‖AT ‖B)−3,

where θ̄ = uθ̃ and u is some real number in (0, 1) that determines a mean value for Tayler’s

expansion of θ̃ 7→ Ωθ̃ = Ω(θ+θ̃/
√

NT ) around 0. Because (1/T )‖θ̃∇Ωθ̄‖2
E is bounded by Lemma

1 (iii), the right hand side of (A.9) turns out to be o(1) as N,T → ∞.
13For the proof of this result, see e.g. Appendix II of Davies (1973).
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As for the second term of (A.9), observe that

1
4T

∣∣∣tr (
Ω−1

0 (θ̃∇Ω0)Ω−1
0 (θ̃∇Ω0)

)
− NT tr

(
Ω−1

θ̃
(Ω0 − Ωθ̃)Ω

−1

θ̃
(Ω0 − Ωθ̃)

)∣∣∣
=

1
4T

∣∣∣tr(
Ω−1

0 (θ̃∇Ω0)Ω−1
0 (θ̃∇Ω0)

)
− tr

(
Ω−1

θ̃
(θ̃∇Ωθ̄)Ω

−1

θ̃
(θ̃∇Ωθ̄)

)∣∣∣
=

1
4T

∣∣∣tr(Ω−1
0 (θ̃∇Ω0)Ω−1

0 (θ̃∇Ω0) − Ω−1

θ̃
(θ̃∇Ω0)Ω−1

0 (θ̃∇Ω0)

+ Ω−1

θ̃
(θ̃∇Ω0)Ω−1

0 (θ̃∇Ω0) − Ω−1

θ̃
(θ̃∇Ωθ̄)Ω

−1
0 (θ̃∇Ω0)

+ Ω−1

θ̃
(θ̃∇Ωθ̄)Ω

−1
0 (θ̃∇Ω0) − Ω−1

θ̃
(θ̃∇Ωθ̄)Ω

−1

θ̃
(θ̃∇Ω0)

+ Ω−1

θ̃
(θ̃∇Ωθ̄)Ω

−1

θ̃
(θ̃∇Ω0) − Ω−1

θ̃
(θ̃∇Ωθ̄)Ω

−1

θ̃
(θ̃∇Ωθ̄)

)∣∣∣
≤ 1

4T
‖θ̃∇Ω0‖2

E‖Ω−1
0 ‖2

B‖Ω−1

θ̃
‖B‖Ωθ̃ − Ω0‖B +

1
4T

‖θ̃∇Ω0 − θ̃∇Ωθ̄‖E‖θ̃∇Ω0‖E‖Ω−1
0 ‖B‖Ω−1

θ̃
‖B

+
1

4T
‖θ̃∇Ω0‖E‖θ̃∇Ωθ̄‖E‖Ω−1

0 ‖B‖Ω−1

θ̃
‖2

B‖Ωθ̃−Ω0‖B +
1

4T
‖θ̃∇Ω0− θ̃∇Ωθ̄‖E‖θ̃∇Ωθ̄‖E‖Ω−1

θ̃
‖2

B.

It follows from the same arguments as above that the extreme right hand side of the last display

is o(1) as N,T → ∞. Thus we have Eθ[aNT ] = o(1).

The proof that Varθ[aNT ] → 0 as N,T → ∞ is similar to the above arguments and thus the

details are omitted.

Lemma 3. As T → ∞,

1
2T

tr
(
Ω−1

0 (θ̃∇Ω0)Ω−1
0 (θ̃∇Ω0)

)
= θ̃′Γ(θ)θ̃ + o(1)

where

Γ(θ) :=
1
4π

∫ π

−π

∂

∂θ
fθ(λ)

∂

∂θ′
fθ(λ)

dλ

f2
θ (λ)

.

Proof. This is a special case of Theorem 4.4 in Davies (1973).

Lemma 4. Under PN,0, as N → ∞ and T → ∞,

1√
NT

N∑
j=1

η̃j1′
T Ω−1

θ̃
wj −

1
2NT

N∑
j=1

η̃2
j1

′
T Ω−1

θ̃
1T =

1√
NT

N∑
j=1

η̃j1′
T Ω−1

0 wj

− 1
2NT

N∑
j=1

η̃2
j1

′
T Ω−1

0 1T + opN,0(1).

Proof. First observe that

Eθ

∣∣∣∣∣∣ 1√
NT

N∑
j=1

η̃j1′
T Ω−1

θ̃
wj −

1√
NT

N∑
j=1

η̃j1′
T Ω−1

0 wj

∣∣∣∣∣∣
2

=
1

NT

N∑
j=1

η̃2
j1

′
T (Ω−1

θ̃
− Ω−1

0 )Ωθ(Ω−1

θ̃
− Ω−1

0 )1T

≤

 1
N

N∑
j=1

η̃2
j

 ‖Ω−1
0 ‖2

B‖Ω−1

θ̃
‖2

B‖Ωθ‖B‖Ω0 − Ωθ̃‖B.

22



The extreme right hand side is o(1) as N,T → ∞, by Assumption 2 and Lemma 1 (i) and (ii).

Thus we have

1√
NT

N∑
j=1

η̃j1′
T Ω−1

θ̃
wj =

1√
NT

N∑
j=1

η̃j1′
T Ω−1

0 wj + oP0,N,T
. (A.10)

Next,∣∣∣∣∣∣ 1
NT

N∑
j=1

η̃2
j1

′
T Ω−1

θ̃
1T − 1

NT

N∑
j=1

η̃2
j1

′
T Ω−1

0 1T

∣∣∣∣∣∣ ≤
 1

N

N∑
j=1

η̃2
j

 ‖Ω−1

θ̃
‖B‖Ω−1

0 ‖B‖Ωθ̃ − Ω0‖B.

The extreme right hand side is also o(1) as N,T → ∞. Hence we have

1
NT

N∑
j=1

η̃2
j1

′
T Ω−1

θ̃
1T =

1
NT

N∑
j=1

η̃2
j1

′
T Ω−1

0 1T + o(1), (A.11)

as N,T → ∞. Combining (A.10) and (A.11) yields the desired result.

Lemma 5. Under PN,0, as N → ∞ and T → ∞,

1
2
√

NT

N∑
j=1

{
w′

jΩ
−1
0 (θ̃∇Ω0)Ω−1

0 wj − tr
(
Ω−1

0 (θ̃∇Ω0)
)}

+
1√
NT

N∑
j=1

η̃j1′
T Ω−1

0 wj
d→ N

0, θ̃′Γ(θ)θ̃ + lim
N→∞

1
N

N∑
j=1

η̃2
j · lim

T→∞

1
T

1′
T Ω−1

0 1T


Proof. To prove the asymptotic normality, we use Theorem 2 in Phillips and Moon (1999).14

Let us denote by bjT an L-dimensional random vector whose m-th component is

1
2

{
w′

jΩ
−1
0

(
∂

∂θm
Ω(θ)

)
Ω−1

0 wj − tr
(

Ω−1
0

(
∂

∂θm
Ω(θ)

))}
.

Define

Cj :=

 θ̃′1 η̃j1

θ̃′2 η̃j2

 and Qj,T :=
1√
T

 bjT

1′
T Ω−1

0 wj

 . (A.12)

Also set ΣT := Eθ[QjT Q′
jT ]. Below we will verify the four conditions in Phillips and Moon in

the order (iv), (i), (ii) and (iii).

Consider the condition (iv). Note that, for s = 1, 2, the (s, s)-th element of (1/N)
∑N

j=1 CjΣT C ′
j

is
14Rigorously speaking, Theorem 3 in Phillips and Moon does not cover our situation because the matrix Cj in

the theorem is required to be a square matrix conformable with QjT , while, in our case, the matrix Cj (defined

in (A.12)) is not necessarily a square matrix. However, closely examining the proof of Theorem 3 in Phillips and

Moon, we can verify that the requirement is not essential and that the result is still valid even when Cj is not a

square matrix.
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1
NT

N∑
j=1

Eθ

∣∣∣∣12 {
w′

jΩ
−1
0 (θ̃s∇Ω0)Ω−1

0 wj − tr
(
Ω−1

0 (θ̃s∇Ω0)
)}

+ η̃js1′
T Ω−1

0 wj

∣∣∣∣2

=
1

2T
tr

(
Ω−1

0 (θ̃s∇Ω0)Ω−1
0 (θ̃s∇Ω0)

)
+

 1
N

N∑
j=1

η̃2
js

 1
T

1′
T Ω−1

0 1T

+
1

NT

N∑
j=1

η̃jsEθ[w′
jΩ

−1
0 (θ̃s∇Ω0)Ω−1

0 wj1′
T Ω−1

0 wj ]

=
1

2T
tr

(
Ω−1

0 (θ̃s∇Ω0)Ω−1
0 (θ̃s∇Ω0)

)
+

 1
N

N∑
j=1

η̃2
js

 1
T

1′
T Ω−1

0 1T ,

where the last equality follows from the observation that

Eθ[w′
jΩ

−1
0 (θ̃s∇Ω0)Ω−1

0 wj1′
T Ω−1

0 wj ] = tr
[(

Ω−1
0 (θ̃s∇Ω0)Ω−1

0

)
Eθ

[(
Ω−1

0 1T ⊗ w′
j

)
(wj ⊗ w′

j)
]]

= 0.

A similar argument shows that, for s 6= t, the (s, t)-th element of (1/N)
∑N

j=1 CjΣT C ′
j is

1
2T

tr
(
Ω−1

0 (θ̃s∇Ω0)Ω−1
0 (θ̃t∇Ω0)

)
+

 1
N

N∑
j=1

η̃jsη̃jt

 1
T

1′
T Ω−1

0 1T

Thus we see that, as N,T → ∞, (1/N)
∑N

j=1 CjΣT C ′
j converges to the covariance matrix (??)

by Lemma 3 and Assumptions 2 and 4. To show the positive definiteness of the covariance

matrix (??), observe that it can be written as θ̃′1

θ̃′2

 Γ(θ)
(

θ̃1 θ̃2

)
+ ρ lim

N→∞

1
N

N∑
j=1

 η̃2
j1 η̃j1η̃j2

η̃j1η̃j2 η̃2
j2

 .

Since Γ(θ) is positive definite and θ1 and θ2 are linearly independent, we deduce that the

covariance matrix is positive definite. Thus the condition (iv) is satisfied.

Next turn to the condition (i). From the same arguments as above, we see that

ΣT →

 Γ(θ) 0

0′ ρ

 ,

as T → ∞. Obviously the limit matrix is positive definite. Thus the continuity of eigen values

(see e.g. Schott (2005, Theorem 3.14 and Example 3.11)) implies that lim infT→∞ λmin(ΣT ) > 0

where λmin(·) denotes the minimum of the eigenvalues. Hence the condition (i) is satisfied.

To verify the condition (ii), first observe that

1
N

N∑
j=1

CjC
′
j =

 θ̃′1

θ̃′2

 (
θ̃1 θ̃2

)
+

1
N

N∑
j=1

 η̃2
j1 η̃j1η̃j2

η̃j1η̃j2 η̃2
j2
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and note that the limit of 1
N

∑N
j=1 CjC

′
j is positive definite. From this it follows that

lim inf
N→∞

λmin

 1
N

N∑
j=1

CjC
′
j

 > 0.

Thus, for sufficiently large N ,

maxj≤N ‖Cj‖2
E

λmin

(∑N
j=1 CjC ′

j

) ≤
‖θ̃1‖2

E + ‖θ̃2‖2
E + maxj≤N η̃2

j1 + maxj≤N η̃2
j2

N lim infN→∞ λmin

(
1
N

∑N
j=1 CjC ′

j

) = O

(
1
N

)
,

by Assumption 2 (ii). This verifies the condition (ii) in Phillips and Moon.

The condition (iii) in Phillips and Moon (1999) requires that the process {‖QjT ‖2
E}T∈Z be

uniformly integrable. A sufficient condition for this is that each component of QjT is bounded

in its fourth moment. In other words, it is enough to prove that, for each m = 1, 2, · · ·L,

1
T 2

Eθ

∣∣∣∣w′
jΩ

−1
0

(
∂

∂θm
Ω(θ)

)
Ω−1

0 wj − tr
(

Ω−1
0

(
∂

∂θm
Ω(θ)

))∣∣∣∣4 = O(1) (A.13)

and

1
T 2

Eθ

∣∣1′
T Ω−1

0 wj

∣∣4 = O(1).

We first show the latter. Observe that

1
T 2

Eθ

∣∣1′
T Ω−1

0 wj

∣∣4 =
1
T 2

Eθ

∣∣w′
jΩ

−1
0 1T1′

T Ω−1
0 wj

∣∣2
=

1
T 2

[
{tr(Ω−1

0 1T1′
T )}2 + 2tr(Ω−1

0 1T1′
T Ω−1

0 1T1′
T )

]
=

3
T 2

(
1′

T Ω−1
0 1T

)2
.

This is O(1) since 1
T 1′

T Ω−1
0 1T is convergent as T → ∞ by Assumption 4.

Next we turn to the fourth moment in (A.13). Let B
(m)
T := Ω−1

0

(
∂

∂θm
Ω(θ)

)
and observe

that

1
T 2

Eθ

∣∣∣w′
jB

(m)
T Ω−1

0 wj − tr
(
B

(m)
T

)∣∣∣4
=

1
T 2

Eθ

∣∣∣w′
jB

(m)
T Ω−1

0 wj

∣∣∣4−4tr
(
B

(m)
T

)
Eθ

∣∣∣w′
jB

(m)
T Ω−1

0 wj

∣∣∣3+6
(
tr

(
B

(m)
T

))2
Eθ

∣∣∣w′
jB

(m)
T Ω−1

0 wj

∣∣∣2
− 4

(
tr

(
B

(m)
T

))3
Eθ

∣∣∣w′
jB

(m)
T Ω−1

0 wj

∣∣∣ +
(
tr

(
B

(m)
T Ω0

))4

Applying the formulae for the third and fourth moments of quadratic forms in Gaussian random

vectors (see e.g. Theorem.10.21 in Schott (2005)), we see that

1
T 2

Eθ

∣∣∣w′
jB

(m)
T Ω−1

0 wj − tr
(
B

(m)
T

)∣∣∣4 =
12
T 2

(
tr

{(
B

(m)
T

)2
})2

+
48
T 2

tr
{(

B
(m)
T

)4
}

≤ 60
T 2

∥∥∥∥ ∂

∂θm
Ω(θ)

∥∥∥∥4

E

‖Ω−1
0 ‖4

B.
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The extreme right hand side is O(1) as N,T → ∞, again by Lemma 1 (ii) and (iii). Therefore

‖QjT ‖2
E is uniformly integrable in T . Now that the conditions of Theorem 3 in Phillips and

Moon are all verified, the asymptotic normality is shown.

Theorem 6. The local log likelihood ratio of our panel model is asymptotically normal in the

sense of van der Vaart and Wellner (1996, p412). That is, under PN,0, as N → ∞ and T → ∞,

we have

log
dPN,h

dPN,0
= ∆N,h − 1

2
‖h‖2 + opn,0(1),

where

∆N,h = ∆N (θ̃, η̃) =
1

2
√

NT

N∑
j=1

{
w′

jΩ
−1
0 (θ̃∇Ω0)Ω−1

0 wj − tr
(
Ω−1

0 (θ̃∇Ω0)
)}

+
1√
NT

N∑
j=1

η̃j1′
T Ω−1

0 wj

converges weakly under PN,0 to ∆h ∼ N(0, ‖h‖2). Here, ‖h‖2 = 〈h, h〉 and the inner product

〈· , ·〉 is defined by

〈(θ̃1, η̃1), (θ̃2, η̃2)〉H := θ̃′1Γ(θ)θ̃2 + lim
N→∞

1
N

N∑
j=1

η̃j1η̃j2 · lim
T→∞

1
T

1′
T Ω−1

0 1T .

Proof. This theorem follows from Lemma 2 to 6.

Theorem 7. Suppose that Assumption 1 to 4 are satisfied. Let ψ be a differentiable function

from Θ into RM and let τN,T be any regular estimator of ψ(θ) as N,T → ∞. Then,

√
NT (τNT − ψ(θ)) d→ N

(
0, ψ̇(θ)Γ(θ)−1ψ̇(θ)′

)
∗ W,

as N,T → ∞, where ∗ denotes a convolution of probability measures, W is some distribution

on the real line. In particular, if the limit law of τNT has variance Σθ, then

Σθ ≥ ψ̇(θ)Γ(θ)−1ψ̇(θ)′.

Proof. In Theorem 6, We have established the LAN property of our panel data model, so that,

in order to apply Theorem 5 into our estimation problem for ψ(θ), we have to decompose ∆(θ̃, η̃)

into a sum of random variables of the form as in the condition (iii) in Theorem 5. To this end,

let us denote by ∆1,N an L-dimensional random vector whose m-th component is

1
2
√

NT

N∑
j=1

{
w′

jΩ
−1
0

(
∂

∂θm
Ω(θ)

)
Ω−1

0 wj − tr
(

Ω−1
0

(
∂

∂θm
Ω(θ)

))}
,
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and also set

∆2,N (η̃) :=
1√
NT

N∑
j=1

η̃j1′
T Ω−1

0 wj .

Then we can write ∆N (θ̃, η̃) = θ̃′∆1,N + ∆2,N (η̃). Now letting (θ̃1, η̃1) = (θ̃, 0) and (θ̃2, η̃2) =

(0, η̃) in Lemma 6, we have, as N → ∞ and T → ∞, θ̃′∆1,N

∆2,N (η̃)

 d→

 θ̃′∆1

∆2(η̃)

 ,

where

∆1 = (∆(1)
1 , ∆(2)

1 , · · · , ∆(L)
1 )′ ∼ N(0, Γ(θ))

and

∆2(η̃) ∼ N(0, lim
N→∞

1
N

N∑
j=1

η̃2
j · lim

T→∞

1
T

1′
T Ω−1

0 1T )

with E∆1∆2(η̃) = 0. Using this joint convergence in distribution, together with the continuous

mapping theorem, we easily see that ∆(θ̃, η̃) admits a desired decomposition ∆(θ̃, η̃) = θ̃′∆1 +

∆2(η̃).

Finally we calculate E∆̃1∆̃′
1. Noting that ∆(m)

1 is orthogonal to ∆2(η̃) for each m =

1, 2, · · · , L, we can deduce that the projection of ∆(m)
1 on the linear space {∆2(η̃)} is just 0

(see e.g. Kreyszig (1989, p148)) and the residual ∆̃(m)
1 in the projection is ∆(m)

1 itself. Hence,

it follows that E∆̃1∆̃′
1 = E∆1∆′

1 = Γ(θ).

This result and Theorem 5 yield the desired result.

Proof of Theorem 2

Setting ψ(θ) = γk(θ) in Theorem 7, we have the desired result.
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